


Explanation:

We know from reports that atmospheric carbon dioxide is on the rise,

and we're given to understand that our activities are driving this growth. But is this true?

We can assess how much we're contributing by referring to global anthropogenic <u>emission</u> <u>estimates</u> from year to year.

	Global Emissions				
Year	Total	Fossil Fuel & Cement			
2014		9.795 GtC	~ 0.9 Gtc		
2013		9.735 GtC			
2012		9.575 GtC			
2011		9.449 GtC			
2010	9.995 Gtc	9.140 GtC	0.855 GtC		
2009	9.567 Gtc	8.700 GtC	0.867 GtC		
2008	9.666 Gtc	8.740 GtC	0.926 GtC		
2007	9.472 Gtc	8.532 GtC	0.940 GtC		
2006	9.355 Gtc	8.363 GtC	0.992 GtC		

These are usually expressed in Gigatons of Carbon (Gt C), and it's easy to determine the difference from the year before, as I've depicted here.

Year	Gt C	Gt change
1946	1.24	0.08
1947	1.39	0.15
1948	1.47	0.08
1949	1.42	-0.05
1950	1.63	0.21
1951	1.77	0.14
1952	1.8	0.03

CO2 data is usually expressed in parts per million in the atmosphere. But the government's Carbon Dioxide Information Analysis Center (CDIAC) offers a simple conversion factor to obtain the equivalent gigatons of carbon. Having that, one may once again determine annual differences, as I've depicted here.

Year	ppm	Gt C	Gt change
1946	310.1	660.51	0
1947	310.2	660.73	0.21
1948	310.3	660.94	0.21
1949	310.5	661.37	0.43
1950	310.7	661.79	0.43
1951	311.1	662.64	0.85
1952	311.5	663.5	0.85

So then, drawing on sources like the <u>CDIAC</u> and the <u>National Oceanic and Atmospheric</u> <u>Administration</u>, one merely compares two respective columns of the year-by-year differences. The chart above is the result.

The average human contribution over this span is 0.135 gigatons, while the atmosphere's average carbon change is 3.202 gigatons, which makes the human contribution 4.2%. This 4.2% is consistent with previous <u>U.S. government/IPCC</u> reports that attributed about 2.9 to 4.5% of yearly emissions to humans. For instance,

Table 2. Global Natural and Anthropogenic Sources and Absorption of Greenhouse Gases

	Sources			Annual Increase in Gas
Gas	Natural	Human-Made	Absorption	in the Atmosphere
Carbon Dioxide (Million Metric Tons of Carbon)	160,000	7,100	163,000	3,200-3,600
Methane (Million Metric Tons of Gas)	160	375	500	35-40
Nitrous Oxide (Million Metric Tons of Gas)	9	6	11	3-5

Source: Summarized from ranges appearing in Intergovernmental Panel on Climate Change, Climate Change 1994: Radiative Forcing of Climate Change (Cambridge, UK: Cambridge University Press, 1995), pp. 41, 51, 86, and 90.

Are the human emission estimates accurate? Are Mauna Loa's techniques sound? I don't know. Assuming they are, though, my impression is that we're not driving a trend at all -- but rather riding alongside a lurching kind of CO2 increase that seems to have a mind of its own.

Alan Siddons