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Quantifying the influence of anthropogenic 
surface processes and inhomogeneities on 

gridded global climate data 
 

 

 

Abstract 

Local land surface modification and variations in data quality affect temperature trends in 
surface-measured data. Such effects are considered extraneous for the purpose of 
measuring climate change, and providers of climate data must develop adjustments to 
filter them out. If done correctly, temperature trends in climate data should be 
uncorrelated with socioeconomic variables that determine these extraneous factors. This 
hypothesis can be tested, which is the main aim of this paper. Using a new data base for 
all available land-based grid cells around the world we test the null hypothesis that the 
spatial pattern of temperature trends in a widely-used gridded climate data set is 
independent of socioeconomic determinants of surface processes and data 

inhomogeneities. The hypothesis is strongly rejected (P= 14101.7 −× ), indicating that 

extraneous (nonclimatic) signals contaminate gridded climate data. The patterns of 
contamination are detectable in both rich and poor countries, and are relatively stronger in 
countries where real income is growing. We apply a battery of model specification tests to 
rule out spurious correlations and endogeneity bias. We conclude that the data 
contamination likely leads to an overstatement of actual trends over land. Using the 
regression model to filter the extraneous, nonclimatic effects reduces the estimated 1980-
2002 global average temperature trend over land by about half.  

 
 
Index terms: Atmosphere; Land/atmosphere interactions; Instruments and techniques; Climate 
change and variability 
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Quantifying the influence of anthropogenic surface processes and inhomogeneities on 

gridded global climate data 

 

 

1 Introduction 

It has long been known that local economic conditions and demographic changes leave 

measurable traces in meteorological records. Climate data, as used for measuring global warming 

and detecting a CO2 influence, originates with meteorological records, but it then undergoes a 

modeling step, the aim of which is to identify and remove all such extraneous signals, in 

principle yielding an estimate of the air temperature trend in a location, had there never been any 

human settlement there (see, e.g. Mitchell 1953, Peterson 2003). Typical usage of climate data 

assumes this filtering to have taken place, such that contaminating signals due to socioeconomic 

factors leave only small, unsystematic, zero-mean and zero-trend noise in climatic data series. If 

true, the spatial pattern of observed climatic trends should be uncorrelated with socioeconomic 

measures that account for variations in extraneous, nonclimatic signals in the underlying 

meteorological data. This hypothesis can be tested, which is the main aim of this paper. Our data 

and model allow us to test for a range of extraneous signals in climatic records which are 

categorized into modifications to the local environment (anthropogenic surface processes) and 

observational difficulties (or data inhomogeneities). We reject the hypothesis that the spatial 

pattern of temperature trends in global climate data is independent of extraneous effects 

(P= 14101.7 −× ). We present evidence that our results are not due to reverse causality (endogeneity 

bias) or spurious correlations. The economic imprints are present in both rich and poor countries 

but are strongest in countries experiencing real income growth. The effects are significant at the 

global level and likely add a sizable upward bias to trends in the global mean temperature 
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anomaly. Our results suggest that as much as half of measured post-1980 land-based “global 

warming” may be attributable to contamination of the basic data.  

 

Over 50 years ago, referring to the use of long-term weather records for measuring climate 

change, J. Murray Mitchell Jr. (1953, page 244) cautioned: “The problem remains one of 

determining what part of a given temperature trend is climatically real and what part the result of 

observational difficulties and of artificial modification of the local environment.” These two 

types of bias continue to affect the measurement of climate change. Observational difficulties, or 

data inhomogeneities (such as station moves and closure, record discontinuities, equipment 

change and changes to the time of observation) are known to have affected records of mean 

temperature (e.g. Baker 1975, Schal and Dale 1977, Karl and Williams 1987, Willmott et al. 

1991, Peterson 2003). Modification of the land-surface, including urbanization and other 

economic activity, has been shown to affect local, regional and possibly global meteorology, and 

thus locally-measured temperature data (e.g. Feddema et al. 2005a,b; Pielke et al 2002; 

McKendry 2003; de Laat and Maurellis 2004, 2006; McKitrick and Michaels 2004). For some 

local meteorological purposes these extraneous effects may not matter, but for applications in 

which weather data are used to construct measures of long term climate change and detect 

anthropogenic influences, a modeling step is required to measure and filter them out. The variety 

of methods in common use will be discussed in the next section. The difficulties in filtering 

extraneous effects continue to be noted in empirical climate studies (e.g. Peterson 2003) but both 

the Third and Fourth Assessment Reports of the Intergovernmental Panel on Climate Change 

(IPCC 2001, 2007) assert that such biases at the global level are extremely small. Also, climate 

change attribution studies (e.g. Tett et al. 1999) presuppose that trends in gridded climate data are 
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only attributable to climatic “forcings” such as solar flux, atmospheric dust and greenhouse gas 

concentrations, on the assumption (stated or implied) that the spatial configuration of local 

modifications to the land surface or determinants of observational difficulties are not significant 

or systematic features of the gridded data.  

 

If this assumption is true, then the spatial pattern of gridcell temperature trends should be 

uncorrelated with variables like Gross Domestic Product, population density, average income, 

and other local, nonclimatic factors. The presence of such correlations, on the other hand, would 

indicate that gridded surface climate data contain extraneous biases, thus measured climatic 

trends may be inaccurate and attempts to identify the climatic influences of greenhouse gases 

might misattribute the causes of apparent trends. Alternatively, if the spatial pattern of 

greenhouse warming just happens to match the spatial pattern of socioeconomic development, it 

suggests conventional signal detection methodology would be unable to identify which one 

explains the observed changes. However, this possibility is critiqued in Sections 4.4 and 4.6 

below. 

 

In this study we develop a new data base encompassing all available land-based grid cells around 

the world, matched to detailed local economic and social conditions, as well as fixed 

geographical factors. Our data and model allow us to test for a range of extraneous signals in 

climatic records which are categorized into land surface changes and observational difficulties 

(or data inhomogeneity). We find clear evidence that the spatial pattern of temperature trends in 

global climate data is significantly associated with each type of extraneous effect.  
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It is sometimes customary to refer to all non-atmospheric, extraneous effects as “nonclimatic.” 

This terminology is not entirely satisfactory, since land use change can also be considered a 

climatic influence (e.g. Feddema et al. 2005a,b). Mitchell (1953) proposed a taxonomy in which 

effects due to station movement, instrumental change, etc are denoted “Apparent” effects, those 

attributable to local environmental change (pollution, urbanization) are “Real-local” and effects 

due to atmospheric composition, solar flux etc. are denoted “Real-climatic.” The latter category 

is what gridded temperature anomaly data are said to measure; the first two are assumed to have 

been filtered out. To keep the terminology simple, we refer herein to apparent and real-local 

effects as “extraneous” biases. 

 

2. Extraneous Biases in Climate Data 

The urban heat island (UHI) effect is not the only source of data contamination, but has been the 

focus of particularly extensive investigation. A survey is in McKendry (2003). UHI effects have 

been documented in, for example: South Africa (Balling and Hughes 1996), Vienna (Böhm 

1998), China (Jones et. al. 1990), Alaska (Magee, Curtis and Wendler 1999), Japan (Fujibe 

1995), India (Hingane 1996), Illinois (Chagnon 1999),  Korea (Chung et al., 2004), Turkey 

(Karaca et al. 1995), Poland (Klysik and Fortuniak 1999), Singapore and Kuala Lumpur (Tso 

1995) etc. See Parker (2004) and Peterson (2003) for contrasting arguments.  Guidelines exist for 

setting up climate monitoring stations so as to minimize the influence of siting on the recorded 

temperature data, but it is rare for the guidelines to be reliably met, even in the US (Davey and 

Pielke Sr., 2005). Typical adjustment models for urbanization are based on rural-urban 

comparisons (e.g. Jones et al. 1990) if sufficient data are available, or, most commonly, empirical 

parameterizations based on regressions against local population growth (McKendry 2003). UHI 
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effects have been shown to arise even at very low levels of population, i.e. in towns with less 

than 10,000 people (Karl et. al. 1988). Changnon (1999) used a unique 64-year record of below-

ground temperatures collected in rural Illinois to show that an upward bias was present in nearby 

weather stations that had been designated “rural” and assumed to be free of UHI problems. Böhm 

(1998) identified a substantial UHI in Vienna temperature records from 1951 to 1995 even 

though the city population had remained constant over the interval. Kalnay and Cai (2003) 

applied a technique for using 6 hour-ahead weather forecasts constrained by atmospheric 

observations from weather balloons to produce estimated surface temperature trends unaffected 

by land-use effects. In a study of the continental US, the comparison to standard surface 

temperature data suggested land-use changes, even in rural areas, had an effect on temperature 

records two to four times larger than previously thought. 

 

Other methods for identifying and removing extraneous signals related to local land use include 

satellite-based measurement of surface energy flux to determine the urbanization component of 

regional temperature trends (Gallo and Owen 2002, Streutker 2003) and satellite measurement of 

night-time lighting (Hansen et al. 2001). However these approaches have not been widely 

applied, mainly because the necessary data are only available for the US.  

 

The study of extraneous biases in surface temperature data has broadened out beyond the simple 

population-based approach, in recognition that there are changes that do not necessarily involve 

large population increases that can nevertheless affect regional temperatures (as in the example 

from Vienna from Böhm (1998) mentioned above): such as changes in agricultural activity and 

vegetation types, soil moisture, local air pollution levels, groundwater diversion, etc. These are 
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referred to as “anthropogenic surface processes” (de Laat and Maurellis 2006). Economic 

variables have recently been introduced in some empirical climatological studies as a way of 

quantifying these processes, and have been shown to have significant explanatory power in 

regional and global climate data (e.g. Kalnay and Cai 2003). de Laat and Maurellis (2004, 2006) 

proposed interpreting carbon dioxide emissions as a proxy for local industrial activity, and 

thereby as an index of local extraneous warming influences on atmospheric temperature trends. 

This interpretation implies a particular spatial pattern of enhanced warming trends not predicted 

by climate models in response to greenhouse gas increases, but which they found to be clearly 

present in global temperature data collected both at the surface and the lower atmosphere. In 

McKitrick and Michaels (2004) we regressed the spatial pattern of trends from 93 countries on a 

matrix of local climatic variables and socioeconomic indicators such as income, education, and 

energy use. Some of the nonclimatic variables yielded significant coefficients. We then repeated 

the analysis on the IPCC gridded data covering the same locations and found approximately the 

same coefficients emerged, albeit diminished in size, with many individual indicators remaining 

significant. An error in the original regression program was found and corrected—see Erratum 

listed in citation—with little effect on the results. We concluded that the IPCC gridded data is 

contaminated by extraneous socioeconomic signals, a finding that is confirmed and strengthened 

in the present paper.  

 

Temperature records are also potentially susceptible to discontinuities if a climate station is 

moved, malfunctions, or is de-staffed, or if the time of day at which the observations are taken 

changes (Baker 1975, Schaal and Dale 1977, Willmott et al. 1991 etc.). Collectively these effects 

are called “inhomogeneities.” Establishing a climate data series of uniform quality requires 
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quantifying and removing the inhomogeneities. In some cases, written records exist of a station’s 

history, revealing dates at which discontinuities may have emerged. Comparison of nearby 

stations can help identify and quantify sudden inhomogeneities at one site that might arise from 

equipment changes or construction near the instruments. But this is only feasible if there are 

many stations suitably close together, which is for the most part only true in parts of the US and 

Europe. Also it only removes short-term discontinuities and does not correct long term biases 

affecting multiple stations, such as those arising from regional urbanization (Mitchell and Jones 

2005).  

 

The challenge of producing quality global climate data arises in part because high-quality 

meteorological data is very costly to collect (see, e.g., Linacre 1992) and therefore changes in 

local and national economic conditions may induce inhomogeneities. The number of reliable 

monitoring sites around the world has fallen dramatically since the mid-1970s. The Global 

Historical Climatology Network reached a peak of 6,000 unique contributing sites in the late 

1960s, but the number fell to fewer than 3,000 as of the late 1990s, with the most dramatic drop 

in the early 1990s (Peterson and Vose 1997) when the number of stations fell by nearly half in 

four years. The drop coincided with the collapse of the Soviet Union and a major international 

recession, and was not spatially uniform. A dramatic visualization of the loss of monitoring sites 

in the early 1990s is available at http://climate.geog.udel.edu/~climate/index.shtml. In its 2001 

Third Assessment Report the IPCC warned that “unless networks [of climate monitoring 

equipment] are significantly improved, it may be difficult or impossible to detect climate change 

in many regions of the globe” ((IPCC 2001, Technical Summary, Page 78)).  
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Of the global climate data sets produced from available historical weather and climate data 

(Hansen et al. 2001, Peterson and Vose 2002, Jones and Moberg 2003)  the “gridded” series from 

the Climate Research Unit (CRU) at the University of East Anglia (http://www.cru.uea.ac.uk/) 

are perhaps the best known, and are used for IPCC reports. The gridded data are disseminated by 

the IPCC as its reference climate data set (See http://ipcc-

ddc.cru.uea.ac.uk/obs/cru_climatologies.html). The IPCC (2007) has downplayed concerns about 

extraneous biases by focusing on urbanization effects, estimating the influence as at most 0.006 

C/decade globally (IPCC 2007, page 5). IPCC (2001) refers to Easterling et al. (1997) and Jones 

et al. (1990), both of which are confined to discussing UHI effects. Easterling et al. (1997) 

compared trends in global averages of climate data and reported minimal differences between 

pooled (rural and urban) results versus rural-only results. However, their definition of “rural” 

included cities up to 50,000 in population, which is large enough to exhibit a UHI. Jones et al. 

(1990) ran a similar comparison on three regions: Eastern Australia, Eastern China and Western 

USSR. Their definition of “rural” included towns of up to 10,000 in the USSR and up to 100,000 

in China. They found relatively strong urban warming in China relative to the rural and pooled 

series, and in the USSR they found stronger relative cooling post-1930 in the rural stations. 

Eastern Australia yielded no differences. They also reported earlier results of strong relative 

warming in the contiguous USA. Although the conclusions of each paper were phrased 

optimistically, neither study suffices to alleviate concerns about extraneous effects, including 

general anthropogenic surface processes, in gridded IPCC temperature data. 

 

Parker (2004) argued that UHI signals in IPCC temperature data do not have explanatory power 

at the global level, based on the similarity in trends between urban samples taken on calm nights 
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versus windy nights. However elevated windspeed has been disputed as a factor in reducing UHI 

effects (see discussion in McKendry 2003), so the similarity in trends may simply indicate that 

the nonclimatic effects exert a similar influence under both conditions (see also Pielke Sr. and 

Matsui 2005). Peterson (2003) looked at more general data contamination issues by applying 

adjustments to US Historical Climatology Network data for variations in elevation, latitude, 

instrumental continuity and time of observation. He found that these sufficed to remove an 

observed difference in means between urban and rural temperatures (differences in trends were 

not reported). The time-of-observation bias had the largest effect, accounting for two-thirds of 

the initial rural-urban mean difference. One implication of the Peterson (2003) findings is that 

multiple sources of extraneous bias (not merely population growth) must be removed to 

homogenize temperature records. The closure of so many weather stations around the world since 

the 1980s raises the possibility that few countries, especially outside the developed world, have 

the staff or money to engage in such quality control efforts.  

 

To summarize, both surface processes and inhomogeneities must be successfully filtered from 

temperature records to yield data products suitable for measuring global climate trends. If done 

correctly this would imply a lack of local correlations between observed temperature trends and 

socioeconomic trends. But we will show that such correlations clearly exist, supporting the 

conclusion that the filtering methods are not successful.  

 

Another interesting implication of these issues concerns the attribution of climate change to 

greenhouse gas emissions. The roles of surface processes and inhomogeneities are ignored in 

attribution studies (e.g. Tett et. al 1999) on the assumption that they have already been removed 
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from climate data. Measured temperature changes are regressed on a matrix of model-generated 

“forcing vectors” that predict the climatic responses to various combinations of solar irradiance, 

volcanic dust, greenhouse gases and sulfate aerosols. The test is whether observed data are 

consistent with the climate having an assumed sensitivity to greenhouse gas levels, and are 

inconsistent with zero sensitivity. Critical to the methodology are the assumptions that the 

climate model used to generate the forcings is substantially “true” and that the temperature data 

are free of extraneous nonclimatic patterns that might be confounded with the pattern of climatic 

changes resulting from greenhouse gases and sulfate emissions (Allen and Tett 1999). If the latter 

assumption is not true, components of observed climate change arising from, e.g., land surface 

processes may be wrongly attributed to greenhouse gas accumulation in the atmosphere (as 

pointed out in, e.g. Pielke Sr. et al. 2002).  

 

The next section outlines the empirical model and the data set used in this paper. Subsequent 

sections present results and discussion. 

 

3 Model and Data  

3.1  A Model of Climate Measurement Distortions 

Suppose there are i = 1, …, n locations around the world at which temperature is measured. In 

each location i a climatic trend iT  over the interval τ =[1979:1—2002:12] in °C/decade is 

sought, but what is actually measured is an observed trend iθ : 

 

 )()( iiii IgSfT ++=θ  (1), 
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where f and g are functions of unknown form, iS  represents surface processes and iI  represents 

inhomogeneities. Surface processes are represented using the percentage changes over the time 

interval τ  in four socioeconomic variables: local population ip , per capita income im , total 

Gross Domestic Product (GDP) iy  and coal consumption ic . Inhomogeneities, or factors 

affecting data quality, are represented using three socioeconomic variables: GDP density ig  as of 

1979, the average level of educational attainment ie  as late in the interval τ  as possible, and the 

number of missing months in the observed temperature series ix  over the interval τ . Educational 

attainment is measured herein as the sum of national literacy and national post-secondary 

education rates. It is included not as an indicator of skill of the specific staff responsible for 

handling meteorological data, but as a measure of the difficulty of recruiting and retaining trained 

technical staff in general in that country. GDP density is national Gross Domestic Product per 

square kilometer. Countries with low GDP density (large land areas relative to their total national 

income) may have a measurement advantage if the low density arises due to high agricultural 

intensity. Some agricultural-based economies, even in low-income countries, have made a point 

of high quality weather data collection in support of their food-producing industry. However low 

GDP density is also a disadvantage if the country has a lot of uninhabited land to monitor relative 

to its resources. By using the GDP density at 1979 we capture the measurement conditions going 

into the interval rather than as they would have developed over the interval, and we ensure the 

measure is “predetermined” in an econometric sense. Possible endogeneity bias is discussed in 

Section 4.4. Other details on data sources are below.  
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In general, surface processes and inhomogeneities may introduce cold or warm biases into the 

data, and no a priori restrictions are imposed. For example, Feddema et al. (2005a,b) estimate 

that global land surface changes since before industrialization have yielded a net cooling effect 

on the climate system. The terms in f and g in (1) are observable, and a linear functional form 

will be assumed (though a RESET test will be applied to check for a nonlinear alternative: see 

section 4.3 below). To put equation (1) into a form useful for estimation would require 

observations of iT , which are not available. Instead we assume iT  is a function of atmospheric 

data iA  that can represent the surface climatic temperature trend up to a multiplicative constant, 

so as to condition the estimated coefficients in (1): 

 

iiiiiii WATERDSLPDRYPRESSTROPhT 543210)( ββββββ +++++≡= A iABSLAT6β+  (2). 

 

The uniqueness up to a multiplicative constant arises since replacing Ti in equation (2) with kTi, 

where k is an arbitrary constant to be estimated, would yield the same estimation results from 

equation (3) below, but k would not be identifiable. In effect, equation (2) assumes it has a value 

of 1, but the conclusions herein would be unchanged if k took a different value.  

 

iTROP  is the time trend of Microwave Sounding Unit (MSU)-derived temperatures in the lower 

troposphere in the same grid cell as iθ over the same time interval, based on Spencer and Christy 

(1990) and published by the Global Hydrology and Climate Centre at the University of Alabama 

(GHCC 2005). Our interpretation assumes the Spencer-Christy data are substantially free of 

extraneous biases due to surface conditions, but de Laat and Maurellis (2004, 2006) have 

presented evidence that even MSU data exhibit some contamination by socioeconomic activity 
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(see also Section 4.6). We comment on the implications of potential contamination of MSU data 

below in Section 6. We selected the Christy and Spencer series as it is a well-known data product 

that has been validated against independent data from weather balloons and other meteorological 

sources in overlapping regions (Pielke Sr. et al. 2004). We have not re-examined these results 

using other MSU-based tropospheric data series, but we do not expect any of the results reported 

herein to be contingent on the choice of MSU product. We use MSU version 5.2, released 

September 2005, reflecting corrections for all known errors due to orbital drift, instrument 

heating and diurnal averaging. The MSU data are expressed as monthly averages and are divided 

into grid cells that can be matched with IPCC data grid cells.  

 

Geographic variables are defined as follows. iPRESS is the mean sea level air pressure in grid cell 

i. The source of the pressure data is the climatology of Jenne (1974), which is the most recent 

global data base of mean pressure readings we were able to find. iDRY  is a dummy variable 

denoting when a grid cell is characterized by predominantly dry conditions (which is indicated by 

the mean dewpoint being below 0 oC). iDSLP  is ii PRESSDRY × . Surface warming due to 

greenhouse gases is hypothesized to occur faster in regions with relatively dry air and high 

atmospheric pressure (Staley and Jurica 1970, Michaels et al. 2000) so pressure enters (2) as a 

linear spline function with a different intercept and slope in dry regions versus moist regions. 

iWATER  is a dummy variable indicating the grid cell contains a major coastline. iABSLAT  

denotes the absolute latitude of the grid cell. This is included to account for latitudinal changes in 

the rate of surface warming. It is sometimes conventional to use the cosine of latitude, which 

adjusts for declining grid cell size towards the poles, but this makes only trivial differences in the 
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results. (Data and STATA code allowing readers to reproduce all our results, and experiment 

with different specifications, are archived at the journal web site.) 

 

Equation (2) takes the observed temperature trend from the lower layers of the atmosphere above 

the surface, which are presumed to be closely coupled to surface trends but largely unaffected by 

the extraneous distortions in the surface record, and allows for location-specific geographical 

factors to account for differences between the trend aloft and that at the surface. Using (1) and (2) 

we can write out an estimating equation as follows: 

 

 iiiiii WATERDSLPDRYPRESSTROP 543210 ββββββθ +++++= iABSLAT6β+  

  iiiiiiii uxgecymp ++++++++ 13121110987 βββββββ  (3). 

 

where iu  is the regression residual. While (3) cannot identify iT , except under fortuitous 

circumstances which are not themselves testable, it allows us to test specific hypotheses 

regarding the independence of observed temperature trends from surface processes and 

determinants of inhomogeneities. Potential multicollinearity in (3) will be discussed in the results 

section below. 

 

3.2  Other Data Sources 

The variable names, definitions and summary statistics are shown in Table 1. The observed 

surface temperature trend iθ  consists of linear (Ordinary Least Squares) trends through monthly 

temperature anomalies (not subject to annual averaging) within 5x5 degree grid cells over 1979:1 

to 2002:12 in 469 land-based grid cells in the ‘crutem2v’ data set available through the IPCC 
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Data Distribution Centre (http://ipcc-ddc.cru.uea.ac.uk/). Because of the need for a trend across 

23 years we required each cell to have data for at least ninety percent of the years, where a year is 

considered intact if at least 8 months are available. This left 451 usable locations. 11 cells are in 

Antarctica, where there is no economy to speak of, several countries share jurisdiction over 

different research sites, and there is an anomalously high rate of missing values, probably due to 

the extreme conditions in which data are collected, so these were also removed. Hence there were 

440 observations in the final data set. Of these, 348 (79 percent) were from the Northern 

Hemisphere and 92 were from the Southern Hemisphere. The imbalance is partly due to the fact 

that there is more land in the Northern Hemisphere, but also reflects the relative sparseness of 

continuous data in many parts of South America and Africa (see Figure 4 below).  The iTROP  

variable is an OLS time trend through monthly data for grid cell i over the same interval.  

 

3.2.1 Surface Process Data 

Each grid cell was assigned to a country. Where a grid cell contained a border the country was 

considered the one with the most land area in the grid cell. Annual real (inflation adjusted) GDP 

for 1979, 1989 and 1999 for each country was obtained primarily from Easterly and Sewadeh 

(2003) or the Central Intelligence Agency (CIA) World Fact Book web site 

http://www.odci.gov/cia/publications/factbook/index.html. Conversions from local currency to 

US dollars was done using the purchasing power parity method. 

 

 There were small adjustments made to the economic data for some countries to provide 

consistency in quantities where direct measures were unavailable. In most cases the adjustment 
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took the form of using an available observation for one or two years after the desired year, and 

adjusting it backwards. 

 

Population data are obtained from Easterly and Sewadeh (2003) and the percent change ip  is 

measured from 1979 to 1999. Income growth im  is the percentage change in real GDP per capita 

from 1979 to 1999. GDP growth iy  is defined as the percentage change in real GDP from 1979 

to 1999. National coal consumption data were obtained from the US Energy Information 

Administration (http://www.eia.doe.gov/emeu/iea) and the coal growth measure is the percentage 

growth of short tons of coal consumed between 1980 and 2000. 

 

Population and GDP density varies considerably within countries, as well as between countries. 

Hence national averages will not capture all the important variations that may influence the 

temperature data. However, the trade-off we face is between encompassing the full range of 

variables we want to include versus matching the grids of measurement of climatic and economic 

data. Since national governments bear primary responsibility for climate data collection, the 

nationally-defined economic measures will capture important information about the availability 

of resources to monitor the whole country’s climate. Also, the substantial variation among 

countries implies that some of the effects of interest are definitely measured by the data we have 

available, albeit at a more coarse resolution than we would like. In the concluding section we will 

discuss the possibilities for future research arising from the development of some new 

socioeconomic data bases at the gridcell level. 

 

3.2.2 Determinants of Inhomogeneities  
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We measure the abundance of human capital using data on international educational attainment. 

McKitrick and Michaels (2004) used national literacy rates as an indicator of the ease of 

maintaining a staff of trained meteorological technicians to operate weather stations. For the 

present study we have updated the literacy data to the 1999 (or closest year) national literacy rate 

(UNESCO 2003) and augmented it with estimates of the percentage completing post-secondary 

education (PSE), obtained from UNESCO (2003). The two measures are summed together to 

yield ie . Qualitatively similar results would be obtained if we used either literacy or PSE alone, 

but by using the sum it controls for changes in one or the other. In the current sample, literacy 

averages 90 percent and PSE averages 16.6 percent. Literacy ranges from a low of 11 percent in 

Niger to over 99 percent throughout the industrialized countries. PSE ranges from less than one 

percent in many African countries up to 45 percent in the United States.  

 

Land area estimates (excluding water) for each country were obtained from the CIA World Fact 

Book (CIA 2003). GDP density ig  is measured as $million/km2. The 1979 value is used to help 

ensure the right-hand side variables are predetermined with respect to the dependent variable, but 

see the further discussion of endogeneity in Section 4.4. A country with a low GDP density has 

relatively fewer national resources for monitoring its domestic land surface. ig  varies widely 

across the sample, from less than 0.01 in parts of Africa up to 4.5 in Japan and 4.8 in Taiwan. 

Canada, China and the US have comparable land masses (9.2, 9.3 and 9.5 million square km, 

respectively). But GDP density in China is 0.16 million$/square km while in the US it is three 

times higher, at 0.47 million$/square km and in Canada it is only one-third as large, at 0.05 

million$/square km. The global sample mean is 0.41, just below the US level, and most countries 

fall in the range between Canada and the US.  
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The variable ix  is the indicator of technical problems in maintaining continuous weather records. 

It is measured as the number of months over the period 1979-2002 in which an observation was 

missing for a grid cell. After removing the Antarctic stations only 95 out of 440 remaining cells 

(22 percent) had at least one missing month, and only 5 (1% of the sample) had more than 12 

months missing. The distribution of missing data shows no pattern across months.  

 

4 Estimation and Testing  

4.1 Model Results  

Equation (3) was estimated using Generalized Least Squares (GLS) as follows. Re-write (3) in 

matrix notation as follows: 

 

 uXβθ +=  (4) 

 

where θ , β  and u are n-vectors (dependent variable, coefficients and residuals, respectively) and 

X is the nxk matrix of independent variables. Coefficients were obtained using the least squares 

estimator θXXXβ ′′= −1)(ˆ . The GLS variance-covariance estimator is  

 

 VΩXXVβ ˆ)(ˆ)ˆ( ′=GLSVar  (5)  

 

where 1)( −′= XXV ,  and the nxn matrix Ω  is the covariance matrix of u. Following White 

(1980), a robust estimator of ΩXX′  can be obtained by replacing Ω  with a diagonal matrix 
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formed with the squared residuals from (4), even if this is itself an inconsistent estimator of Ω  

(see Davidson and MacKinnon 2004 p. 198), as long as observations are independent. In our data 

base some of the socioeconomic variables are constant within the 81 countries in our sample, 

resulting in possible non-independence (clustering) of errors within country groups. Denote the 

country groups as )81(,),1( CC K . To allow within-cluster non-independence the estimator (5) is 

re-written as  

 

 VξξVβ ˆˆ)ˆ(
81

1













′= ∑

=j

jj
c
GLSVar  (6) 

 

where 













= ∑

∈ )( jC

j u
κ

κκ xξ , )( jC∈κ  denotes the elements of cluster j, and κx  is the κ -th row of X 

(StataCorp. 2003, pp. 274-275). OLS parameter estimates and the variances from (6) were 

estimated using STATA 8.0 (StataCorp. 2003). Estimates for equation (3) and various submodels 

are presented in Table 2. 

 

 
Coefficient standard errors at the global level (Table 2, SURF) were also checked by the 

bootstrap method using 500 repetitions. Confidence intervals were quite stable. In all cases where 

a parameter is significant under GLS its confidence interval did not expand to encompass zero 

under bootstrap resampling.  
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The coefficient on iTROP  is positive and significant as expected, and has a value of 

approximately 0.9 in all models, reflecting the expected correlation between temperature trends 

at the surface and those in the atmospheric layer just above the surface. The remaining 

geographical variables are mostly insignificant. In a regression of the surface trends just on the 

geographic variables (Model G1), the other variables besides iTROP  are insignificant, the R2 is 

0.45 and the log-likelihood is 105.0. In the full model (SURF, column 1) the R2 score rises to 

0.53 and the log-likelihood rises to 139, indicating that there is a fraction of variability in the 

surface temperature data unexplained by the atmospheric temperature trend sub-model, for which 

the socioeconomic indicators provide significant explanatory power. The joint F test on the 

socioeconomic indicators is highly significant (P = 14101.7 −× ).  

 

It is noteworthy in the SURF column that population is significant and the coefficient is large. 

The IPCC gridded data are supposed to have been pre-filtered for the influence of population 

growth, and if this contamination had successfully been removed the coefficient would be zero. 

The coefficient size, if extrapolated linearly, indicates that a 100% increase in population (pi = 

1.00) would add 0.38 °C/ decade to the observed trend in a gridcell. Model G2 introduces 

population growth as the only nonclimatic factor. It is positive and significant, though smaller, 

but the overall R
2 increases very little, indicating this variable alone has limited explanatory 

power. Population growth alone cannot explain the role of other economic factors, which need to 

be controlled separately. 
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In Model G3 the inhomogeneity factors ig , ie  and xi are introduced, and two of the three are 

significant. Increased educational attainment ( ie ) is associated with less measured warming 

(identical to the finding in McKitrick and Michaels 2004), while higher GDP density ( ig ) is 

associated with more measured warming (the effect was insignificant in McKitrick and Michaels 

2004). Adding in a squared GDP density variable did not improve the model: both ig  and its 

square became insignificant. Missing data counts (xi) had a slightly positive effect but the effect 

is insignificant. In Model G4 the surface process measures are introduced and all four are 

significant. Positive GDP growth is associated with lower measured warming trends; population, 

income and coal use add to warming trends.  

 

The surface process measures are clearly significant. The negative coefficient on GDP growth 

(yi) suggests that an increase in GDP is associated with a cooling trend. This is consistent with 

the findings of Feddema et al. (2005a,b) regarding overall land-surface modification since 

industrialization. However yi cannot be interpreted on its own in this model because of the way it 

interacts with average income mi and population pi. If yi is used on its own (as is pi in G2) then 

the coefficient becomes positive (0.037) and significant (t = 2.82). GDP growth is defined as 

yi=GDP(1999)/GDP(1979)-1, and similarly for mi and pi. Since income is just GDP/population 

the three variables factorize as )1)(1()1( iii mpy ++=+ , implying iiiiiii pmpmypm ++=++ 22 . 

If yi is replaced by (mi pi) the estimated coefficient is identical, though the coefficients on mi and 

pi change (not shown).  Hence the surface process coefficients should be examined jointly, and 

the individual effects should be interpreted with some care.  
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The p-values for joint hypothesis tests (using standard F statistics) are listed in the bottom rows 

of Table 3. The test P(I) is the prob-value of the test that the inhomogeneity variables gi, ei and xi 

are jointly zero. The test P(S) is the prob-value of the test that the four surface process growth 

rates are jointly zero, and P(all) tests whether all the nonclimatic factors (pi through xi) are jointly 

zero. Every entry indicates a significant rejection of the hypothesis, and the overall conclusion is 

unambiguously that the socioeconomic data have significant explanatory power on the spatial 

pattern of trends in the surface climate data. The hypothesis that the temperature data are 

independent of socioeconomic influences can be confidently rejected. 

 

Multicollinearity can be a concern in a regression model with many explanatory variables, 

however the usual indication of its presence is a combination of insignificant coefficient t-

statistics and significant joint F or model F scores. In our case the joint and model F scores are 

significant, but the socioeconomic variables are almost always individually significant as well. 

Hence if some variance inflation occurs due to partial correlations among regressors, it is not 

sufficient to obscure the basic results. Of the 78 correlation coefficients among regressors, 71 

were less than 0.5. Only two were above 0.9, that between iDRY  and iDSLP  ( 00.1=ρ ) and that 

between mi and yi ( 958.0=ρ ). The first pair is not important since they are part of a spline 

function and are identical by construction in the overlap segment. The second pair are related by 

factorization, as noted above, and the interpretation is primarily in their joint significance. The 

variance inflation factors of mi and yi were 110.8 and 124.9 respectively. For the remaining nine 

variables, the variance inflation factors were all less than 10.0; indeed eight were less than 5.0 

and six were less than 2.0, indicating that the model has sufficient data to identify independent 

effects of the included regressors. 
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Another model run (G5) used all variables except TROP. The remaining geography variables 

became more significant, especially latitude, but the socioeconomic measures hardly changed and 

all the individual and joint hypothesis tests remained highly significant.  

 

4.2 Influential Outliers 

In this and the next few sections we consider tests of specification and endogeneity, to test 

whether the model is merely generating fluke correlations. We begin with a test for the role of 

influential outliers. The global model was re-run as follows. For each observation, the 

corresponding diagonal element of the OLS hat matrix was evaluated, and the observation 

removed if the value exceeded twice the mean of the hat matrix diagonal elements (Kmenta 

1986, pp. 424-426). This resulted in removal of 29 observations, leaving a sample size of 411. 

There was no obvious spatial pattern to the 29 outliers (see Figure 1), though there is some 

indication of a cluster in the North Sea region. A comparison of summary statistics between the 

samples suggests that the outlier regions have much higher rates of missing data and relatively 

high growth in coal consumption. The coefficients of the model without outliers were quite 

similar to the SURF results in Table 2, though the growth in coal use was no longer significant. 

The vector of coefficients was compared to that of the Table 2 SURF results using a Hausman-

type chi-squared statistic. The joint variance-covariance matrix was estimated and the model 

coefficients were compared, yielding a 2χ (14) score of 18.82, which is insignificant (P = 0.17), 

indicating that we do not reject the hypothesis that there are no systematic differences in the 

coefficients between the models with and without outliers. Consequently it is unlikely that the 

results in Table 2 are merely due to uncharacteristic outlier observations.  
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Figure 1. Global distribution of influential outliers removed from sample for calculation of 
results in Section 4.2.  
 
 
 

4.3 Regression Error Specification Test Against General Nonlinear Alternative  

A regression error specification (RESET) test was applied to check for biases due to unmodeled 

nonlinear structural components in the error term. The RESET test evaluates whether the 

dependent variable is a nonlinear function of the explanatory variables, in which case the linear 

model would be a misspecification. The test is run as follows. Predicted values iθ̂  were obtained 

from fitting the SURF model and the regression was re-run using the same model augmented 

with 2ˆ
iθ  on the right-hand side. The t-statistic on 2ˆ

iθ  is an exact test of the null hypothesis that 

there is no nonlinear structure in the residuals, including any monotonic function of the right-

hand side variables up to a quadratic (Davidson and MacKinnon 2004 pp. 653—655). The 
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coefficient was -0.0225 and the t-statistic was -0.06 (P = 0.956), clearly failing to reject the null, 

indicating support for the linear model specification in (3).  

 

4.4 Endogeneity 

Endogeneity (also called simultaneity) bias arises in a regression model if the regressors are 

themselves partly determined by the value of the dependent variable. This implies that they are 

not orthogonal to the random error terms, violating the assumptions of classical linear regression 

and yielding biased and inconsistent coefficients. It could arise in this model if the right-hand 

side variables were not predetermined with respect to temperature trends, e.g. if economic agents 

were forward-looking with respect to climate change and adjusted productive activity in a region 

based on anticipated temperature changes. We find the concern about endogeneity implausible 

for three reasons. 

 

First, as was noted by Schelling (1992), among others, very little economic activity in developed 

countries is affected by the weather. Agriculture, fishing and forestry are, but greenhouse 

warming does not involve predictions of uniformly deleterious outcomes (e.g. Mendelsohn et al. 

2000), and in any case these sectors make up small fractions of the world’s economies, typically 

less than five percent in developed countries.  

 

Second, region-specific climate change prediction was not available in 1979 and is not even 

reliably available today. But suppose agents did have rational expectations and accurate forecasts 

as of 1979. Then we would expect to see the largest economic adjustments coinciding with the 

regions of the largest forecasted climate change from conventional global climate models, such 
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as those used for the IPCC reports. But the pattern of large economic changes is uncorrelated 

with the regional pattern of predicted greenhouse warming (see de Laat and Maurellis 2006, Fig. 

1). Consequently, it is highly unlikely that changes in economic activity can be explained by 

expectations of regional warming, since it occurs in places other than where the warming is 

expected.  

 

Third, a Hausman test provides no support for a charge of inconsistency. A Hausman test 

compares two versions of the regression model, one in which the estimates are efficient but 

potentially inconsistent, and one in which the estimates are consistent but inefficient. 

“Consistency,” in statistical terms, means that the expected value of an estimate converges to the 

true value as the sample size approaches infinity. “Efficiency” means that the estimated variance 

is the lowest among the class of unbiased estimators. The two vectors of coefficient estimates are 

compared, with the null hypothesis that there is no systematic difference between them. The 

variables that might be susceptible to endogeneity are the surface process measures (pi, mi, yi, ci). 

A Hausman test was implemented as follows. First, an efficient estimator was obtained using 

OLS on equation (3). Second, we regressed each surface process variable on pre-determined 

explanatory variables and obtained the model-predicted values: 

 

 iiiiiiiii
j

i GDPdenpopdenxegeeggq 7979 8765
2

43
2

210 ααααααααα ++++++++=  

  iiiiiii slpdryslpSovietpopGDPcoal 1414131211109 797980 ααααααα +++++++  

  iii vabslatwater +++ 1615 αα  (7) 
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where 41−
iq  represents the four surface variables, popden79i is 1979 population density, 

GDPden79i is 1979 GDP density, coal80i is 1980 national coal consumption, GDP79i is 1979 

national GDP, pop79i is 1979 total population, Sovieti is a dummy variable for membership in the 

former Soviet Union and vi is a regression residual. Since the righthand side variables are all 

predetermined as of 1979, and all temperature data (either surface or tropospheric) is left out of 

(7), the OLS predicted values 41ˆ −
iq  are strictly exogenous with respect to post-1979 temperature. 

Third, equation (3) was re-run with (pi, mi, yi, ci) replaced by 41ˆ −
iq , obtaining consistent 

estimators. The variance-covariance matrix comparing the efficient and consistent estimators was 

obtained and the Hausman )14(2χ  score was 3.83, which has a P-value of 0.9964, indicating no 

grounds whatsoever for finding a difference between the efficient and consistent estimators. 

Consequently, on both ex ante and ex post grounds we can rule out endogenous temperature 

effects on the right-hand side of (3) as the explanation of our main results.  

 

4.5 Out of Sample Prediction 

A rigorous test of a regression model is its ability to predict data not included in the estimation. 

This is especially useful for testing whether both dependent and independent variables are jointly 

determined by omitted “third” factors, resulting in fluke regression coefficients. Our test 

consisted of randomly removing 30% of the observations, then running the regression (3) on the 

remaining 70% of the grid cells and using the resulting coefficients to predict the withheld 

sample, yielding the vector iFSUR ˆ . Then, for the 30% withheld sample, the actual grid cell trends 

were regressed on the predicted trends. A perfect predictor would yield a 45o line (zero intercept,  
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Figure 2. Horizontal axis: observed values of temperature trends in randomly-selected subset of 
data comprising 30% of original data set. Vertical axis: predicted values  for same locations from 
regression equation (3) applied to global data with randomly-selected 30% of data withheld. Line 
shown is 45o (not regression fit).  
 

unit slope) between predicted and actual observations. In 500 repetitions the constant term was  

typically near zero (mean approximately 0.01), the slope coefficient was typically near one (mean 

approximately 0.96) and the R2 indicated a high level of explained variance (mean approximately 

0.50). An F test that the regression is a 45 o degree line was consistently not rejected (mean P 

approximately 0.37). An example is shown in Figure 2. Consequently, in repeated tests of out-of-

sample prediction, the closeness of a scatter of predicted and actual data to a 45o line and the high 

significance level of the predictions, gives us confidence that equation (3) is a valid empirical 

model.  

 

4.6 Tropospheric Model 
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If the surface regression results are simply spurious spatial correlations based on a coincidental 

similarity to the spatial pattern of the Earth’s general atmospheric circulation, then we would find 

the same right hand side coefficients and significance levels if the dependent variable SURFi 

were replaced with TROPi. But if the surface processes are genuine effects they ought to be 

substantially weaker in the tropospheric data compared to the surface (though not necessarily 

zero). The results of this regression are in Table 3.  

 

The surface processes (pi, mi, yi, ci) are, as expected, smaller and in three cases insignificant. The 

coal use effect is about half the size but remains significant. The four measures are jointly 

insignificant (P = 0.2114). The inhomogeneity measures show an ambiguous change. 

Educational attainment vanishes, GDP density retains its size (though not its significance) and xi, 

the missing data score, becomes larger and significant. Obviously, problems in measuring surface 

data would not affect satellite records, so this indicates that xi is serving as a proxy for something 

else that would have an atmospheric interpretation, in the five percent of grid cells with missing 

data. In particular, greater rates of missing data at the surface correlate with lower temperature 

trends aloft. We regressed xi on the five variables dry through abslat, and there was an interesting 

contrast between the moist and dry regions. The results were 

 

 (.)132.002.135ˆ +×−= ii slpx  (moist regions) 

 (.)010.0.097.9ˆ +×+−= ii slpx  (dry regions) 

 

where (.) denotes the water and abslat variables (which are both significant). In the moist regions, 

missing data is less prevalent the higher the air pressure and the relationship is significant 
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(P=0.003). In dry regions the relationship vanishes and the pressure coefficient is insignificant 

(P=0.726). Low air pressure is associated with the more storm-prone regions, hence xi may be 

acting as a marker for moist, storm-prone regions. In that case the negative coefficient on xi in the 

second column of Table 3 may be a spurious effect reflecting the fact that air temperature trends 

are smaller over moist, unstable regions such as the tropics.  However, to the extent that this 

raises a question about the interpretation of xi in Table 2 it doesn’t matter much, since at the 

global level the variable is insignificant in all specifications (but see next section).  

 

5. Economic Subsamples 

Some further detail emerges in subsamples defined on economic grounds. The sample was split 

into rich and poor locations, and growing/declining groups. ‘Rich’ was defined as having above-

median income based on the 1999 data (217 of 440 observations); ‘growing’ was defined as 1999 

real per capita income exceeding that in 1979 (335 of 440 observations). The results are in Table 

4.  

 

When divided into rich and poor subgroups, a distinction emerges between inhomogeneity 

effects and surface processes, whereby the former are uniformly significant across income groups 

while the latter become uniformly insignificant. It is noteworthy that in the global sample, 

missing data is insignificant, but this masks significant, contrasting effects between rich and poor 

regions. However, as indicated in Section 4.6, xi is potentially confounded with a local climate 

extremity.  
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The disappearance of the surface process effects within subgroups suggests that they have a step-

function-like character, such that the significant effects in the pooled global sample derive from 

differences between rich and poor groups, whereas the within-group effects appear to be 

insignificant.  

 

An even sharper contrast emerges between growing and declining economies. In growing regions 

(76% of the sample) the inhomogeneity effects are close to those in the global sample, while 

three of the four surface process effects are roughly double the size of those in the global sample, 

and all are significant, individually and jointly. But in declining economies, neither 

inhomogeneity nor surface process effects exert significant effects on the temperature trends. The 

absence of inhomogeneity effects is somewhat unexpected, though the overall GDP density effect 

(gi) is larger and nearly significant in the declining region. The disappearance of the education 

effect may indicate that constraints on human capital are offset by the low opportunity cost of 

labour of all kinds (including skilled labour) during periods of decline.  

 

Overall, the global results appear to be particularly associated with growing economies. Since 

only 24 percent of the grid cells are in countries that experienced real declines in income, the 

growth effects are sufficiently widespread to affect the global results. While the relative strength 

of surface process effects in growing countries accords well with intuition, the relatively strength 

of inhomogeneity effects in rich countries compared to poor countries does not. We would have 

expected resource constraints to have stronger effects in poor countries, though we note that the 

inhomogeneity effects are jointly significant in both regions.  
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6. Identifying Nonclimatic trends 

Focusing on the results at the global level, we can reject the hypothesis that adjustments to 

climatic data are successful in removing the extraneous influences of socioeconomic conditions 

in the regions of origin. While it is not possible to use the coefficients from (3) to identify the 

vector of ‘true’ climatic trends iT , it is possible to try and simulate ideal climatic measurement 

conditions.  

 

Peterson (2003) shows that US data can, in principle, be adjusted to remove extraneous biases of 

significant  size. On this basis we postulate that countries with public sector resources and 

general public skill levels comparable to those in the US would be, in principle, able to provide 

uncontaminated climatic data. We therefore generated an adjusted vector of predicted values 

ADJ
iθ̂ under the assumptions that all countries have GDP density and educational levels equivalent 

to those in the USA and that all other surface and inhomogeneity effects were set equal to zero: 

 

 iiiii
ADJ

i WATERDSLPDRYPRESSTROP 543210
ˆˆˆˆˆˆˆ ββββββθ +++++= iABSLAT6β̂+  

  36762.0ˆ2.144ˆ
1211 ×+×+ ββ  (8) 

 

The resulting average temperature trend using (8) is 0.17 °C/decade, a drop of just under one-half 

of the observed sample average grid cell trend of 0.30 °C/decade, and below the MSU average of 

0.23 °C/decade. If the data are weighted by relative grid cell size (using the cosine of latitude) the 

effect is a bit larger. The weighted average grid cell trend is 0.27 oC/decade, the weighted MSU 

average is 0.20 °C/decade and (8) yields a weighted average of 0.13°C/decade, a drop of just over 
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one-half. Additionally, the sample density is lowest in regions like Africa and South America, the 

majority of whose grid cells show a warm bias. If these cells were weighted relatively more 

heavily to adjust for the extent of missing data, the drop in the global average trend would be 

even larger.  

 

Frequency histograms are shown in Figure 3 The effect of removing the local distortions as 

estimated by the model is to bring the shape of the surface data distribution more closely into line 

with that of the satellite-measured lower troposphere data, primarily by removing the large upper 

tail. While we do not assert that the ‘true’ average land-based climatic warming trend is 0.17 °C/ 

decade, our analysis does suggest that nonclimatic effects are present in the gridded temperature 

data used by the IPCC and that they likely add up to a net warming bias at the global level that 

may explain as much as half the observed land-based warming trend. This result mirrors that in 

McKitrick and Michaels 2004, as well as the findings in deLaat and Maurellis (2004, 2006) and 

Kalnay and Cai (2005), all of whom found the overall effect of surface processes to be a positive 

bias to observed temperature trends. Since this analysis takes the tropospheric record to be 

‘clean’, whereas the results in Section 4.6 suggest that even the MSU series may reflect 

anthropogenic surface process effects, our findings should be viewed as a lower bound, or 

conservative estimate of the magnitude of the global data contamination. 
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Figure 3: Distributions of temperature trends 1979-2002. Top: IPCC surface data. Middle: 
satellite (MSU) tropospheric data. Bottom: adjusted surface data. Smoothed kernel density 
shown.  
 

 

The positive biases found here are not uniformly distributed around the world. Figure 4 shows 

the differences ( ADJ
ii θθ ˆ− ) on a global map. Note the regions where the adjustments are minimal 

are North America, Eastern Europe and Australia. Widespread positive biases are observed in 

Western Europe and Southeast Asia. Africa and South America contain many regions with 

missing data, though the map overstates this, because at the equator, the raster squares are 

smaller than the grid cells they represent, due to the global projection used.  
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Figure 4. Differences between observed and adjusted trends around the world. Raster squares 
correspond to center of 5ox5o grid cell, but not to size of grid cell itself. Units are oC/decade. A 
value of, say, 0.1-0.2 means that the observed trend in that cell was between 0.1 and 0.2 
oC/decade higher than the trend as adjusted using equation (8). 

 

 

8 Conclusions  

The standard interpretation of global climate data is that extraneous effects, such as urbanization 

and other land surface effects, and data quality problems due to inhomogeneities in the 

temperature series, are removed by adjustment algorithms, and therefore do not bias the large-

scale trends. Our empirical model of the post-1980 interval embeds this assumption as a null 

hypothesis, and it is rejected at very high confidence levels. We show that our results cannot be 

explained away as outlier effects, model misspecification or reverse causality (endogeneity) bias. 

Out-of-sample prediction tests consistently perform well, and we show that variables 

representing changes in economic activity have significant explanatory power on the pattern of 
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trends in published climatic data measured at the Earth’s surface, but not in trends measured in 

the lower part of the atmosphere, thus showing that our results are not likely due to spurious 

correlation. Taken together, our findings show that trends in gridded climate data are, in part, 

driven by the varying socioeconomic characteristics of the regions of origin, implying a residual 

contamination remains even after adjustment algorithms have been applied. Users of gridded 

climate data products need to interpret their results accordingly. 

 

These results are also consistent with previous findings showing that nonclimatic factors, such as 

those related to land use change and variations in data quality, likely add up to a net warming 

bias in climate data, suggesting an overstatement of the rate of global warming over land. They 

also provide support for attribution of some observed climate changes in recent decades to land 

surface modifications, rather than greenhouse gas emissions, a factor not typically evaluated in 

studies that attempt to attribute the causes of recent global warming. 

 

Our data set has a low resolution for strictly local measures of economic density within countries. 

Since we detect significant effects on temperature trends even with low spatial resolution we 

conjecture that if future studies are able to examine the issues at the subnational level, even more 

significant and detailed results will emerge. There is some prospect for future subnational 

studies, possibly by merging the EDGAR data base (as used in de Laat and Maurellis 2004, 

2006) with the new G-Econ data set (http://gecon.yale.edu/) developed by Nordhaus (2006). 

Additionally, there is always the possibility in cross-sectional regressions that unobservable 

heterogeneity may explain both climate and economic processes in such a way as to eliminate the 

significance of results reported herein. That could be formally tested in a panel data set where the 
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time dimension provides additional identification of fixed cross-sectional effects, which is a 

direction for future research. 
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Var Definition Obs Mean Std. Dev. Min Max 

Surf 

 

Surface temperature 
trend ( iθ ) 440 0.3015 0.2574 -0.7 1.02 

Trop 

 

Tropospheric 
temperature trend 440 0.2325 0.1838 -0.1969 0.6832 

Press Sea level air pressure 440 1016.2 5.3024 993 1029 

       

Dry Dummy for dry region 440 0.4614 0.4991 0 1 

       

Dslp Dry x Press 440 469.40 507.78 0 1029 

       

Water 

 

Grid cell contains a coast 
line 440 0.6045 0.4895 0 1 

Abslat Absolute latitude 440 40.602 17.953 2.5 82.5 

       

g 

 

1979 Real National GDP 
per sq km in millions 440 0.2965 0.5999 0.0014 3.0023 

e 

 

Literacy +Post-secondary 
education rates 440 106.52 26.200 11.6 144.2 

x 

 

# missing months in grid 
cell temperature record 440 0.7636 2.5522 0 24 

p % growth in population* 440 0.2792 0.2089 -0.0692 1.2353 

       

m 

 

% growth in real average 
income* 440 0.3799 0.6142 -0.7901 2.1472 

y 

 

% growth in real national 
GDP** 440 0.7710 0.8391 -0.6686 3.0025 

c 

 

% growth in coal 
consumption* 440 1.0158 4.0557 -1 39.333 

Rich 

 

1999 real income > 
median 440 0.4932 0.5005 0 1 

Grow 

 

1999 real income > 1979 
real income 440 0.7614 0.4267 0 1 

Table 1: Model Variables. Definitions discussed further in text. *over the interval 1979 to 
1999. **Over the interval 1980 to 2000. % Changes should be multiplied by 100, e.g. mean 
population growth is 27.92%.  
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Variable SURF G1 G2 G3 G4 G5 

trop 0.8631 0.9054 0.9195 0.8884 0.8855  

 (8.62) (10.28) (9.73) (8.94) (8.89)  

slp 0.0044 -0.0012 0.0009 0.0041 -0.0006 0.0043 

 (1.02) (-0.22) (0.16) (0.92) (-0.13) (0.91) 

dry 0.5704 -4.3301 -2.6643 1.5847 -4.8544 -9.2581 

 (0.10) (-0.59) (-0.37) (0.29) (-0.70) (-1.58) 

dslp -0.0005 0.0043 0.0027 -0.0015 0.0048 0.0092 

 (-0.09) (0.60) (0.38) (-0.27) (0.71) (1.61) 

water -0.0289 -0.0374 -0.0308 -0.0245 -0.0403 -0.0024 

 (-1.37) (-1.63) (-1.37) (-1.19) (-1.73) (-0.09) 

abslat 0.0006 -0.0014 -0.0002 -0.0003 0.0004 0.0061 

 (0.51) (-1.63) (-0.16) (-0.29) (0.38) (3.39) 

g 0.0432   0.0480  0.0798 

 (3.36)   (3.81)  (3.15) 

e -0.0027   -0.0028  -0.0030 

 (-5.14)   (-5.49)  (-4.26) 

x 0.0041   0.0029  -0.0057 

 (1.66)   (1.10)  (-1.52) 

p 0.3839  0.1798  0.4143 0.5432 

 (2.72)  (2.23)  (3.59) (2.80) 

m 0.4093    0.3374 0.6334 

 (2.39)    (2.47) (2.66) 

y -0.3047    -0.2287 -0.4834 

 (-2.22)    (-2.17) (-2.57) 

c 0.0062    0.0036 0.0093 

 (3.45)    (2.42) (3.56) 

constant -4.2081 1.3425 -0.8378 -3.7889 0.6149 -4.1492 

 (-0.96) (0.24) (-0.15) (-0.84) (0.13) (-0.85) 

N 440 440 440 440 440 440.00 

R
2
 0.53 0.45 0.46 0.51 0.48 0.34 

ll 139.22 105.03 109.92 131.53 116.88 63.18 

P(I) 0.0000   0.0000  0.0000 

P(S) 0.0004    0.0001 0.0022 

P(all) 0.0000     0.0000 

TABLE 2:  MAIN PARAMETER ESTIMATES. Coefficient t-statistics underneath in 

parentheses, based on robust standard errors. Bold denotes significant at 95%. Variable codes: g: 
1979 GDP density; e: educational attainment; x: count of missing months; p: % change in 
population; m: %income growth; y: % growth in GDP; c: &growth in coal consumption. ll  = 
loglikelihood value. P(I) = prob value of test that all inhomogeneity factors (g—x) are jointly 
zero; P(S) = prob value of test that all surface process coefficients (p—c) are jointly zero; P(all) = 
prob value of test that g—c are jointly zero.  
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Variable SURF TROP 

trop 0.8631  

 (8.62)  

slp 0.0044 -0.0001 

 (1.02) (-0.03) 

dry 0.5704 -11.3879 

 (0.10) (-3.01) 

dslp -0.0005 0.0112 

 (-0.09) (3.02) 

water -0.0289 0.0307 

 (-1.37) (1.37) 

abslat 0.0006 0.0064 

 (0.51) (5.39) 

g 0.0432 0.0424 

 (3.36) (1.81) 

e -0.0027 -0.0004 

 (-5.14) (-0.58) 

x 0.0041 -0.0114 

 (1.66) (-3.22) 

p 0.3839 0.1845 

 (2.72) (1.42) 

m 0.4093 0.2596 

 (2.39) (1.55) 

y -0.3047 -0.2069 

 (-2.22) (-1.59) 

c 0.0062 0.0036 

 (3.45) (2.11) 

_cons -4.2081 0.0682 

 (-0.96) (0.02) 

N 440 440.00 
R

2 0.53 0.49 

ll 139.22 269.02 

Table 3: Comparison of basic model and version with dependent variable surface trends replaced 

by tropospheric trends. Bold denotes significant at 95%. T statistics in parentheses.  
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Variable Sglobe Rich Poor Growing Declining 

trop 0.8631 1.1224 0.6257 0.9378 0.6085 

 (8.62) (8.59) (4.52) (8.20) (2.47) 

slp 0.0044 0.0084 0.0121 0.0043 -0.0017 

 (1.02) (1.57) (1.33) (1.20) (-0.05) 

dry 0.5704 6.4594 5.3143 4.4592 -12.1839 

 (0.10) (0.85) (0.54) (0.82) (-0.33) 

dslp -0.0005 -0.0063 -0.0051 -0.0043 0.0121 

 (-0.09) (-0.84) (-0.52) (-0.80) (0.33) 

water -0.0289 -0.0350 -0.0326 -0.0295 -0.0358 

 (-1.37) (-2.19) (-1.11) (-1.15) (-0.96) 

abslat 0.0006 0.0009 -0.0021 0.0002 0.0026 

 (0.51) (0.47) (-1.32) (0.14) (0.85) 

g 0.0432 0.0517 0.0614 0.0385 0.4325 

 (3.36) (3.27) (0.47) (3.03) (1.91) 

e -0.0027 -0.0047 -0.0018 -0.0026 -0.0029 

 (-5.14) (-6.79) (-2.02) (-4.54) (-1.27) 

x 0.0041 -0.0066 0.0053 0.0044 0.0002 

 (1.66) (-2.29) (2.88) (0.99) (0.05) 

p 0.3839 0.8761 0.2554 0.8867 -0.0002 

 (2.72) (1.40) (1.71) (4.22) (-0.01) 

m 0.4093 0.5398 0.2659 0.8687 -0.2361 

 (2.39) (1.04) (1.48) (3.87) (-0.59) 

y -0.3047 -0.4365 -0.2003 -0.6453 0.2913 

 (-2.22) (-1.02) (-1.41) (-3.62) (1.12) 

c 0.0062 0.0043 0.0022 0.0075 -0.0105 

 (3.45) (1.07) (0.50) (3.49) (-0.42) 

_cons -4.2081 -8.1950 -11.9809 -4.1058 1.9676 

 (-0.96) (-1.49) (-1.30) (-1.14) (0.06) 

N 440 217 223 335 105 

R
2 0.53 0.63 0.47 0.56 0.44 

ll 139.22 75.61 79.80 107.13 40.38 

P(I) 0.0000 0.0000 0.0078 0.0000 0.2372 

P(S) 0.0005 0.2775 0.3282 0.0000 0.1623 

P(all) 0.0000 0.0000 0.0009 0.0000 0.1030 

Table 4: Rich/poor, Growing/declining subsamples. Column 1 shows Sglobe results from 
Table 2 for comparison. Variable codes as for Table 2. P(I) = prob value of test that all 
inhomogeneity factors (g—x) are jointly zero; P(S) = prob value of test that all surface process 

coefficients (p—c) are jointly zero; P(all) = prob value of test that g—c are jointly zero. Bold 
denotes significant at 95%. T statistics in parentheses.  

 


